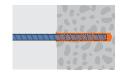
VME 600 Технология инъецирования

Свойства

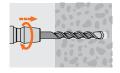
- Европейское техническое свидетельство, опция 1 и 7, для установки в сжатой и растянутой зонах бетона и природном камне
- Обладает высоким коэффициентом сцепления с бетоном. Обеспечивает наивысшие показатели несущей способности узла
- Используется для глубокой анкеровки и отверстий большого диаметра благодаря нулевой усадке и более длительному времени твердения состава. Обеспечивает герметичность узла
- Устойчив к влаге, допускается установка во влажных отверстиях и заполненных водой
- Согласно ЕТА клеевой состав имеет допуск для установки в отверстия, выполненные установками алмазного бурения
- По протоколам ЕТА клеевой состав допускается использовать в сейсмических районах с арматурой от Ø8 до Ø32 мм и резьбовыми шпильками от М8 до М30 мм
- В соответствии с ЕТА, срок эксплуатации (экономически обоснованный срок службы) — 50 лет для всех способов бурения и 100 лет для бурения перфоратором
- Расчет по СП 513.1325800.2022 «Анкерные крепления к бетону. Правила проектирования»
- Долговечен и устойчив к агрессивным средам щелочам, кислотам, морской воде и нефтепродуктам
- Протестирован и допущен к использованию с питьевой водой
- Практически без запаха
- Цвет состава: красный

Технические данные

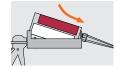

Температура базового материала	5°C	10°C	15°C	25°C	30°C	40°C
Время схватывания	70 мин	32 мин	28 мин	22 мин	20 мин	18 мин
Время полного отверждения (сухое отверстие ¹⁾)	48 ч	40 ч	30 ч	17 ч	16 ч	12 ч

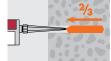
¹⁾ Для влажного отверстия время полного отверждения увеличивается в два раза.

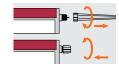
$h_1 = h_{ef} + 5 \text{ MM}$


Применение

Используется для установки резьбовых шпилек и арматурных выпусков при реконструкции и новом строительстве. Часто используется для крепления стоек шумозащитных экранов к железобетонному основанию. Широко применяется при строительстве метро, транспортных развязок, аэропортов и спортивных сооружений. Технология VME 600 расчитана на высокие эксплуатационные нагрузки при устройстве фундаментных болтов, крепления балок, элементов мостового полотна и при усилении существующих конструкций зданий.






Установка

Артикул	Описание	Объем, мл	Количество в упаковке, шт.
60022	Картридж + 1 смеситель	585	10 (картон)

VME 600 Технология инъецирования

Артикул	Для картриджа	Количество в упаковке, шт.
28353585	585 мл	1

Артикул	Содержание	Для картриджа	Количество в упаковке, шт.
ACU385585	- батареи 2 шт. - зарядное устройство - чемодан	385, 585 мл	1

Аккумуляторный дозатор для картриджа

VME 600 Технология инъецирования, резьбовая шпилька

Расчетная нагрузка, одиночное крепление

Глубина посадки	h _{ef}	ММ	80	90	110	125	170	210	240	280	300	340		
Оцинкованная сталь класса 5.8	Оцинкованная сталь класса 5.8													
Сжатая зона бетона В25			M8	M10	M12	M16	M20	M24	M27	M30	M33 ¹⁾	M36 ¹⁾		
Вырыв	N_{Rd}	кН	12,7	20,1	29,2	54,4	84,9	122,4	159,1	194,5	240,6	283,2		
Срез	V_{Rd}	кН	7,2	12,0	16,8	31,2	48,8	70,4	92,0	114,0	138,8	170,0		
Растянутая зона бетона В25			M8	M10	M12	M16	M20	M24	M27	M30	M33 ¹⁾	M36 ¹⁾		
Вырыв	N_{Rd}	кН	-	_	11,4	23,9	39,9	57,5	79,6	97,3	127,5	150,1		
Срез	V_{Rd}	кН	_	_	16,8	31,2	48,8	70,4	92,0	114,0	138,8	170,0		
Оцинкованная сталь класса 8.8	1													
Сжатая зона бетона В25			М8	M10	M12	M16	M20	M24	M27	M30	M33 ¹⁾	M36 ¹⁾		
Вырыв	N_{Rd}	кН	19,5	30,9	45,0	71,3	113,9	168,9	203,6	263,9	311,1	384,6		
Срез	V_{Rd}	кН	11,7	18,6	27,0	50,2	78,4	113,0	146,8	179,5	222,1	261,4		
Растянутая зона бетона В25			M8	M10	M12	M16	M20	M24	M27	M30	M33 ¹⁾	M36 ¹⁾		
Вырыв	N_{Rd}	кН	-	_	17,6	31,4	53,5	79,4	101,8	132,0	164,9	203,8		
Срез	V_{Rd}	кН	_	_	27,0	50,2	78,4	113,0	146,8	179,5	222,1	261,4		

¹⁾ Данные от фирмы-изготовителя.

Параметры установки анкера

Диаметр отверстия в бетоне	d_0	ММ	10	12	14	18	22	28	30	35	38	40
Минимальная толщина бетона	\mathbf{h}_{\min}	ММ	h _{ef} + 30 мм ≥ 100 мм			$h_{ef} + 2 \times d_0$						
Момент затяжки	T _{inst}	Нм	10 20 40			80	120	160	180	200	250	300

Осевое расстояние между анкерами и расстояние от оси анкера до кромки бетона

Минимальное осевое расстояние	S _{min}	ММ	40	40	60	80	100	120	135	150	165	180
Минимальное расстояние до кромки бетона	C _{min}	ММ	40	40	60	80	100	120	135	150	165	180

VME 600 Технология инъецирования, арматура

Расчетная нагрузка, одиночное крепление

Глубина посадки	h_{ef}	ММ	80	90	110	125	170	210	240	280	320	340
Арматура А500С												
Сжатая зона бетона В25			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36¹)	Ø40¹)
Вырыв	N_{Rd}	кН	21,4	28,3	32,3	45,4	77,2	110,0	129,0	156,4	201,1	237,4
Срез	V_{Rd}	кН	9,3	14,3	20,7	37,0	57,7	90,0	112,5	147,3	187,0	231,0
Растянутая зона бетона В25			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36¹)	Ø40¹)
Вырыв	N_{Rd}	кН	-	-	16,1	24,4	41,5	64,1	82,1	109,5	140,8	166,2
Срез	V_{Rd}	кН	-	-	20,7	37,0	57,7	90,0	112,7	147,3	187,7	231,3

Параметры установки анкера

Минимальная толщина бетона	h _{min}	ММ	h _{ef} + 30	$h_{ef} + 30 \text{ MM} \ge 100 \text{ MM}$			$h_{ef} + 2 \times d_0$							
Диаметр отверстия в бетоне	d_{o}	ММ	12	14	16	20	25	30	35	40	45	50		

Осевое расстояние между анкерами и расстояние от оси анкера до кромки бетона

•		•	•				•						
Минимальное осевое расстояние	S _{min}	ММ	40	50	60	80	100	125	130	150	180	200	
Минимальное расстояние	C _{min}	ММ	40	50	60	80	100	125	130	150	180	200	

Для определения расчетных усилий шпилек с другим классом стали обращайтесь в инженерный отдел.

При использовании арматурных стержней из стали А400 обращайтесь в инженерный отдел для определения расчетных усилий.