

Mungo Befestigungstechnik AG Bornfeldstrasse 2 CH-4600 Olten SWITZERLAND Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark

CustomerSupport@eurofins.com www.eurofins.com/VOC-testing

VOC EMISSION TEST REPORT French VOC Regulation

18 June 2020

1 Sample Information

Sample name MIT-SP / MIT-SPE Plus, MIT-SP Winter

Batch no. 504 247 19
Production date 04/09/2019
Product type Chemical anchor
Sample reception 01/10/2019

2 Brief Evaluation of the Results

Regulation or protocol	Conclusion	Version of regulation or protocol
French VOC Regulation	EMISSIONS DANS LIAB INTERELUR	Regulation of March and May 2011 (DEVL1101903D and DEVL1104875A)

Full details based on the testing and direct comparison with limit values are available in the following pages

Malene Laugesen
Analytical Service Manager

Rasmus Stengaard Christensen
Analytical Service Manager, MSc in Chemistry

Table of contents

1	Sample information	
2	Brief Evaluation of the Results	1
3	Applied Test Methods	3
3.1	General Test References	3
3.2	Specific Laboratory Sampling and Analyses	3
4	Test Parameters, Sample Preparation and Deviations	4
4.1	VOC Emission Chamber Test Parameters	4
4.2	Preparation of the Test Specimen	4
4.3	Picture of Sample	4
4.4	Deviations from Referenced Protocols and Regulations	4
5	Summary and Evaluation of the Results	5
5.1	Comparison with Limit Values of the French VOC Regulation	5
6	Appendices	6
6.1	Chromatogram of VOC Emissions after 28 Days	6
6.2	How to Understand the Results	7
6.3	Description of VOC Emission Test	8
6.4	Quality Assurance	8
6.5	Accreditation	8
6.6	Uncertainty of the Test Method	O

3 Applied Test Methods

3.1 General Test References

Regulation, protocol or standard	Version	Reporting limit VOC [µg/m³]	Calculation of TVOC	Combined uncertainty [¤] [RSD(%)]
EN 16516	October 2017	5	Toluene equivalents	22%
ISO 16000 -3 -6 -9 -11	2006-2011 depending on part	2	Toluene equivalents	22%
ASTM D5116-10	2010	-	-	-
French VOC Classes	Regulation of March and May 2011 (DEVL1101903D and DEVL1104875A)	2	Toluene equivalents	22%

3.2 Specific Laboratory Sampling and Analyses

Procedure	External Method	Internal SOP	Quantification limit / sampling volume	Analytical principle	Uncertainty ^s [RSD(%)]
Sample preparation	ISO 16000-11:2006, EN16402:2013, CDPH:2017, AgBB:2018, EMICODE:2019	71M549810	-	-	-
Emission chamber testing	ISO 16000-9:2006, EN 16516:2017	71M549811	-	Chamber and air control	-
Sampling of VOC	ISO 16000-6:2011, EN 16516:2017	71M549812	5 L	Tenax TA	-
Analysis of VOC	ISO 16000-6:2011, EN 16516:2017	71M542808B	1 μg/m³	ATD-GC/MS	10%
Sampling of aldehydes	ISO 16000-3:2011, EN 16516:2017	71M549812	35 L	DNPH	-
Analysis of aldehydes	ISO 16000-3:2011, EN 717-1:2004, EN 16516:2017	71M548400	3-6 µg/m³	HPLC-UV	10%

4 Test Parameters, Sample Preparation and Deviations

4.1 VOC Emission Chamber Test Parameters

Parameter	Value	Parameter	Value
Chamber volume, V[L]	119	Preconditioning period	-
Air Change rate, n[h ⁻¹]	0.5	Test period	16/10/2019 - 13/11/2019
Relative humidity of supply air, RH [%]	50 ± 3	Area specific ventilation rate, q [m/h or m³/m²/h]	71
Temperature of supply air, T [°C]	23 ± 1	Loading factor [m²/m³]	0.007
		Test scenario	Very small area

4.2 Preparation of the Test Specimen

The sample was applied onto a glass plate and drawn off over a model giving a 3 mm thick and uniform layer with a broadness of 10 mm.

4.3 Picture of Sample

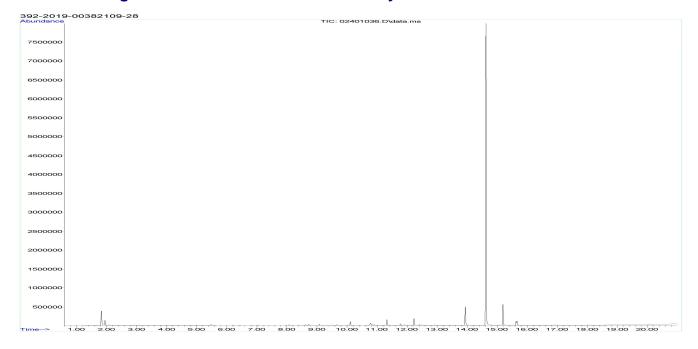
4.4 Deviations from Referenced Protocols and Regulations

No deviations from the referenced test methods were observed.

5 Summary and Evaluation of the Results

5.1 Comparison with Limit Values of the French VOC Regulation

	CAS No.	Conc. 28 days	ÉHISSIONS DAMS L'AIR INTÉRIEUR	EMISSIONS DANS L'AIR INTÉRIEUR	EMISSIONS DAMS L'AIR INTÉRIEUR	EMISSIONS DANS L'AIR INTÉRIEUR-
		μg/m³	µg/m³	µg/m³	μg/m³	µg/m³
TVOC	-	380	>2000	<2000	<1500	<1000
Formaldehyde	50-00-0	< 3	>120	<120	<60	<10
Acetaldehyde	75-07-0	< 3	>400	<400	<300	<200
Toluene	108-88-3	< 2	>600	<600	<450	<300
Tetrachloroethylene	127-18-4	< 2	>500	<500	<350	<250
Ethylbenzene	100-41-4	< 2	>1500	<1500	<1000	<750
Xylene	1330-20-7	< 2	>400	<400	<300	<200
Styrene	100-42-5	< 2	>500	<500	<350	<250
2-Butoxyethanol	111-76-2	< 2	>2000	<2000	<1500	<1000
1,2,4-Trimethylbenzene	95-63-6	< 2	>2000	<2000	<1500	<1000
1,4-Dichlorobenzene	106-46-7	< 2	>120	<120	<90	<60


The product was assigned a VOC emission class without taking into account the measurement uncertainty associated with the result. As specified in French Decree no. 2011-321 of March 23 2011, correct assignment of the VOC emission class is the sole responsibility of the party responsible for distribution of the product in the French market.

6 Appendices

6.1 Chromatogram of VOC Emissions after 28 Days

6.2 How to Understand the Results

6.2.1 Acronyms Used in the Report

- < Means less than
- > Means bigger than
- Not a part of our accreditation
- ^m Please see section regarding uncertainty in the Appendices.
- § Deviation from method. Please see deviation section
- a The method is not optimal for very volatile compounds. For these substances smaller results and a higher measurement uncertainty cannot be ruled out.
- b The component originates from the substrate and is thus removed.
- c The results have been corrected by the emission from wooden panels.
- d Very polar organic compounds are not suitable for reliable quantification using tenax TA adsorbent and HP-5 GC column. A high degree of uncertainty must be expected.
- e The component may be overestimated due to contribution from the system SER Specific Emission Rate.

6.3 Description of VOC Emission Test

6.3.1 Test Chamber

The test chamber is made of stainless steel. A multi-step air clean-up is performed before loading the chamber, and a blank check of the empty chamber is performed.

The chamber operation parameters are as described in the test method section. (EN 16516, ISO 16000-9, internal method no.: 71M549811).

6.3.2 Expression of the Test Results

All test results are calculated as specific emission rate, and as extrapolated air concentration in the European Reference Room (EN 16516, AgBB, EMICODE, M1 and Indoor Air Comfort).

6.3.3 Testing of VOC

The emissions of volatile organic compounds are tested by drawing sample air from the test chamber outlet through Tenax TA tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by ATD-GC/MS using HP-5 column (30 m, 0.25mm ID, 0.25µm film).

All eight substances are identified if present. Quantification above 2 $\mu g/m^3$ is done using the TIC signal and authentic response factors.

Total Volatile Organic Compounds (TVOC) is calculated by summation of all individual VOCs with a concentration $\geq 2 \ \mu g/m^3$. The TVOC is expressed in toluene equivalents as defined in EN 16516 and similar to ISO 16000-6.

6.3.4 Testing of Aldehydes

The presence of aldehydes is tested by drawing air samples from the test chamber outlet through DNPH-coated silicagel tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by solvent desorption and subsequently by HPLC and UV-/diode array detection.

The absence of formaldehyde and other aldehydes is stated if UV detector response at the specific wavelength is lacking at the specific retention time in the chromatogram. Otherwise it is checked whether the reporting limit is exceeded. In this case the identity is finally checked by comparing full scan sample UV spectra with full scan standard UV spectra.

6.4 Quality Assurance

Before loading the test chamber, a blank check of the empty chamber is performed and compliance with background concentrations in accordance with EN 16516 / ISO 16000-9 is determined.

Air sampling at the chamber outlet and subsequent analysis is performed in duplicate. Relative humidity, temperature and air change rate in the chambers is logged every 5 minutes and checked daily. A double determination is performed on random samples at a regular interval and results are registered in a control chart to ensure the uncertainty and reproducibility of the method.

The stability of the analytical system is checked by a general function test of device and column, and by use of control charts for monitoring the response of individual substances prior to each analytical sequence.

6.5 Accreditation

The testing methods described above are accredited on line with EN ISO/IEC 17025 by DANAK (no. 522). This accreditation is valid worldwide due to mutual approvals of the national accreditation bodies (ILAC/IAF, see also www.eurofins.com/galten.aspx#accreditation).

The results are only valid for the tested sample(s).

Not all parameters are covered by this accreditation. The accreditation does not cover parameters marked with an asterisk (*), however analysis of these parameters is conducted at the same level of quality as for the accredited parameters.

6.6 Uncertainty of the Test Method

The relative standard deviation of the overall analysis is 22%. The expanded uncertainty Um equals 2 x RSD. For further information please visit www.eurofins.dk/uncertainty.